CENSUS OF THE COMMONWEALTH OF AUSTRALIA.

$$
\text { 30th June, } 1947 .
$$

AUSTRALIAN LIFE TABLES, 1946-1948.

\qquad

Prepared by
WALTER C. BALMFORD, F.I.A., COMMONWEALTH ACTUARY.

Published under instructions from THE RIGHT HONORABLE THE TREASURER,

By
ROLAND WILSON, C.B.E., B.Com., D.Phil., Ph.D., COMMONWEALTH STATISTICIAN.

CONTENTS.

REPORT ON THE AUSTRALIAN LIFE TABLES, 1946-1948 BY THE COMMONWEALTH ACTUARY.

It has been the practice, after each successive Census, to prepare Life Tables representative of the mortality experience of Australia. In continuation of this practice, the following Report deals with the construction of Life Tables based on the results of the 1947 Census. The new Tables form the sixth of the series.
2. The first three Life Tables for the whole of Australia were prepared under the direction of the Commonwealth Statistician and covered the decennial periods 1881-90, 1891-1900 and 1901-10. Tables based on the Census of 1921 were derived by the Commonwealth Statistician from the population recorded at that Census and the deaths in the three years 1920-22. In connexion with the 1933 Census the Life Tables, which were prepared by Mr. F. W. Barford, M.A., A.I.A., had regard to the deaths during the years 1932-34.
3. On this occasion the possible effect on the civilian population of conditions arising from the 1939-45 War rendered it undesirable to take into account deaths occurring prior to 1946, and the Life Tables have been based on the population recorded at the 1947 Census in conjunction with the deaths during 1946, 1947 and 1948. The Census was taken on the night of 30th June, 1947, and as the recorded population relates to the midpoint of the period 1st January, 1946, to 31st December, 1948, it may be assumed to represent the average population of the three years 1946 to 1948.
4. Throughout the investigation, except where specifically mentioned, the experience of males and females has been dealt with separately.

DATA.

5. The greater part of the data which have been used can be readily obtained from the official Report on the Census and the bulletins of Demography published annually. The Report on the Census had not been published when this investigation was instituted but the necessary data and such other needed information were furnished to me in advance of publication. The principal statistics employed are shown in Appendix C and consist of-
(a) the census population, male and female separately, at individual ages;
(b) the deaths during 1946 to 1948, male and female separately, at individual ages;
(c) the births between 1940 and 1948 ; and
(d) the deaths from 1941 to 1948, at ages under six years, subdivided in the case of deaths under one year of age during the last three years of the period, into deaths in each quarter of age.
The population comprised $3,797,370$ males and $3,781,988$ females and there were 124,707 male and 100,261 female deaths in the three years 1946 to 1948 .
6. One rather unexpected feature of the Census was the large increase in the number of persons whose ages were not recorded. At the 1933 Census there were 10,188 males and 8,655 females of unknown ages out of a total population of $3,367,111$ and $3,262,728$ respectively. In June, 1947, the corresponding figures were 24,847 males among a population of $3,797,370$ and 23,946 females among a population of $3,781,988$. An examination of the data showed that the omissions had been largely confined to the population above school age and for the purpose of constructing the Life Tables, the numbers of unknown age were distributed proportionately among the population aged fifteen and over. The number of deaths of unknown age during 1946 to 1948 was not significant.

CONSTRUCTION OF THE LIFE TABLES.

7. Mean Population.-The assumption that the census population is a reasonable approximation to the true mean population may not be a valid one if the population has been subject to substantial fluctuations during the period under review. The proximity to the 1939-45 War, the inauguration of large scale migration shortly after the end of the War and the marked increase in the number of births in recent years, necessitated a careful examination, both in the aggregate and at individual ages, of the population movements which had taken place.

Regarding the first two features referred to above, the following factors have to be considered :-
(a) the small excess of emigration over immigration prior to 30th June, 1947 ;
(b) the increase in population due to immigration, after 30th June, 1947 ;
(c) the inclusion in the census population of a substantial number of members of the Defence Forces who returned from overseas between 1st January, 1946, and 30th June, 1947 ; and
(d) the inclusion in the Australian death statistics after 30th June, 1947, of deaths of members of the Defence Forces serving within Australia and the exclusion before that date of deaths of Defence personnel wherever serving.
An examination was made of the extent to which these factors would necessitate a correction of the census population in order to obtain a better approximation to the true mean population. This examination revealed that, for males, the addition to the census population to allow for migration operated in the opposite direction to, and was sufficient to minimize, the deduction to allow for the movement in Defence personnel. In the case of women, the effect of migration was not significant. I concluded that on the whole the various adjustments had no practical significance when applied to mortality rates calculated from the census population.

I am satisfied that it can be assumed, except at infantile ages where special processes have been employed, and at very advanced ages where the question of age misstatements becomes of major importance, that the population at the census date can be adopted as representing the mean population of the three-year period 1946 to 1948.
8. King's Method.-For the calculation of the rates of mortality applicable to the main span of ages I have used the method of the late George King, F.I.A., which has been adopted in England for all National Life Tables since 1911 and which was used for the construction of the Australian 1932-34 Tables. I have been led to this decision as the result of various considerations. The method has been proved to be particularly suitable for the computation of mortality rates from population statistics. It has been shown to produce smooth curves which adhere closely to the original data and it deals in a satisfactory manner with the presence of age misstatements in the census returns. In addition, as the mathematical calculations involved are not too complicated, the resulting mortality rates can be readily reproduced from the data included in Appendix C.

In conjunction with Mr. H. Vaughan, F.I.A., of Sydney, to whom I am grateful for helpful advice, I have examined other methods of constructing mortality tables from census data. These included a difference equation method and a summation method, both of which he himself had devised. I found that, over the greater period of life, the resulting mortality rates differed very little from those obtained by King's method and consequently felt loth to depart from a standard method which has been used so extensively in the past.
9. Briefly, King's method involves the grouping of the population and deaths in quinary age groups and the calculation of pivotal mortality rates applicable to the central age of each group. The intervening values are inserted by osculatory interpolation and special processes are used for early and advanced ages.
10. Quinary Grouping.-The selection of the quinary age grouping to be used is a matter of importance as the most reliable pivotal values will be obtained from that grouping in which the excess of numbers resulting from age misstatements at favoured ages is best counter-balanced by the deficiency in numbers at other ages. Exhaustive experiments were made to ascertain the grouping which would be most effective for this purpose. There is no really satisfactory method which will definitely determine the best grouping and a decision was obtained after an examination of the trend of the recorded population and deaths when aggregated according to the last digit of age.

Between ages 16 and 85 the numbers for five ages ending in a particular digit were aggregated. Thus the first aggregation was the sum of the population (or deaths) at ages $16,26,36,46,56$; the second group was $17,27,37,47,57$; and the last group was 45,55 , $65,75,85$. The conclusions obtained from the resulting series were that, as regards the population, ages ending in the digits $0,1,2$ for males and $9,0,1,2$ for females should not be separated, whilst for deaths, ages ending in the digits $0,1,2$ on the one hand and $5,6,7$ on the other, should be combined. These conclusions indicated that the grouping of ages ending in digits 4 to 8 and 9 to 3 , or 3 to 7 and 8 to 2 would most effectively eliminate the irregularities arising from age misstatements. On the whole, I preferred the former grouping and this was adopted.
11. By means of this grouping, pivotal values of the mean population and deaths in three years were obtained at ages 11, 16
86.

From these values the pivotal rates of mortality $\left(q_{x}\right)$ at the same ages were obtained from the formula

$$
q_{x}=\frac{\theta_{x}}{3 P_{x}+\frac{1}{2} \theta_{x}},
$$

where θ_{x} is the adjusted deaths in the three years, and P_{x} is the adjusted population, at the pivotal age x. King's osculatory interpolation process was applied to the function $\log \left(q_{x}+.1\right)$ to obtain a smoothly graduated series of mortality rates $\left(q_{x}\right)$ for individual ages from 16 to 81 . The function $\log \left(q_{x}+.1\right)$ was used because experiments showed that by its use a smoother progression was obtained than by operating directly on q_{x}.
12. Infantile Ages.-The mortality rate changes rapidly over the first four or five years of life. The census figures for these ages may be subject to error not only because of age misstatements, as at older ages, but also because of omissions from the census returns. For these reasons a special method involving computation of infantile mortality rates directly from the records of births and deaths has been used. The method adopted is described in Appendix D, and the statistics from which the mortality rates were calculated are reproduced in Appendix C.
13. Before adopting this method for calculating the infantile mortality rates, it was considered desirable to examine the effect of certain approximations necessarily inherent in the formulae given in Appendix D. These were-
(i) the use of birth statistics tabulated according to the date of registration in spite of the fact that there is often a substantial interval between the actual date of birth and the date of registration, and
(ii) the assumption that the deaths are evenly spread over the quarter of age when it is known that this is not always so, especially during the first three months of life.
14. To measure the extent of any error arising through the use of birth registrations, arrangements were made for two samples to be extracted from the schedules of registrations. The years selected for the samples were 1944 and 1947 and the data were obtained by an examination of every third birth in the scheduled registrations for each State for the months of February, May, August and November in each of those years. There was only a very slight variation between the results of the two samples which indicated that, for the period under review-

56 per cent. of registrations in a month were born in that month.
41 per cent. of registrations in a month were born in the first month prior, and
3 per cent. of registrations in a month were born in the second month prior.
100 per cent.
This information enabled birth registrations to be redistributed according to the months in which, on the average, the births actually occurred. Two sets of mortality rates for the first five years of life were then calculated using for one set unadjusted births and, for the other, adjusted births.

No information could be obtained as to the delay in registration of deaths but it is to be presumed that any error here is not so serious as among the births.
15. The extent of the error involved in the assumption that deaths are evenly spread over the quarter of age was examined for the first year of life only. The examination was not carried to other infantile ages because it was obvious that at those ages any error would be negligible.

The procedure adopted was-
(a) By subdividing all the deaths under one month of age during the years 1946 to 1948, into deaths at ages $0-1$ day, 1-2 days 6-7 days, 1-2 weeks, 2-3 weeks and 3-4 weeks, it was estimated that, after making a small allowance of between one and two days for the probable delay in registration of deaths, about 16 per cent. of the deaths in the first month of life, which were registered in a month, were derived from the births of the previous month.
(b) Because of the absence of any detailed subdivision it was necessarily assumed that of the deaths in a month at age 1-2 months, 50 per cent. were born in the previous month and the remainder in the month before that.
(c) For the same reason it was also assumed that of the deaths in a month at age $2-3$ months, 50 per cent. were born in the previous month but one and the remainder in the month before that.
(d) By applying to the proportions at (a), (b) and (c) weights derived from the deaths during 1946 to 1948 in the first, second and third months of life, it was estimated that of the deaths aged 0-3 months in a quarter, 11 per cent. could, on the average, be allocated to the births of the previous quarter.
(e) Somewhat similar processes were adopted for the deaths at ages 3-6 months, 6-9 months and 9-12 months. The results indicated that of the deaths at age 3-6 months, in a quarter, 55 per cent. arose from births in the preceding quarter and 45 per cent. in the quarter before that. The indications were that 50 per cent. of the deaths at ages $6-9$ months and $9-12$ months in a quarter could be related to the births in each of the appropriate quarters.
16. As pointed out in paragraph 13 the formulae in Appendix D assume that deaths are evenly spread over the quarter of age. It follows that the proportion of deaths at age 0-3 months in a quarter, which relate to births in the previous quarter, is assumed to be one-half. As a result, one-half of the births in the fourth quarter of 1945 are brought into the formula for q^{0-3} months and one-half of the births in the fourth quarter of 1948 are deducted. The conclusion obtained in paragraph $15(\mathrm{~d})$ is, however, that the adjustment should be of the order of one-ninth instead of one-half.

The small alteration which could have been made to the proportions of births in the third quarters of 1945 and 1948 included in the formula for q^{3-9} months had no effect on the mortality rate. No adjustment was needed to the formulae for the mortality rates in the second six months of life.
17. The adjustments referred to in paragraphs 14 and 16 would reduce the rate of mortality in the first year of life by .00015 . As this adjustment is itself dependent on certain assumptions and as it is small in relation to the rate of mortality in the first year of life, I decided to retain the mortality rates based on the formulae in Appendix D. The figure may, however, be regarded as an approximation to the value of the error arising from the two assumptions which have been examined.
18. Ages 6 to 15 .- By the methods described in the previous paragraphs mortality rates had been obtained for ages 0 to 5 , for ages 16, 17 and onwards, together with a pivotal rate at age 11. It remained to insert the intermediate values. For this purpose, in the case of males, a fourth difference formula based on the mortality rates for ages 4, 5, 11, 16 and 17 was used to obtain intervening values. Comparison of the expected deaths produced by these rates with the deaths which had actually occurred showed however, that the pivotal value at age 11 had been placed too low. The reason appeared to be that the rapid fall in the number of deaths at earlier ages had an undue effect on the number of adjusted deaths at pivotal age 11. The crude mortality rate for the age group 9 to 13 appeared to give a better value for age 11 and this was finally adopted in the fourth difference formula.

For females, a similar formula was used. An adjustment at age 11 was not considered necessary as the feature which caused the difficulty in connexion with the male rates was not so pronounced for females.
19. Ages 87 to 104.-Previous Australian National Tables have arbitrarily assumed a mortality rate of unity at age 104 and, in 1933, proceeded to insert the intermediate values from age 88 by interpolatory processes. Such an assumption for the present Tables would have produced unjustifiably high mortality rates at the advanced ages. Moreover, I am unable to accept the assumption that the mortality rate can be fixed at unity at any particular age.

The data at advanced ages are meagre and an examination of the average values of the central mortality rate (m_{x}) for the age groups 79-83, 84-88, 89-93 and $94-98$, as shown in the following table -in particular the ratios in columns (2) and (4)-leads to the conclusion that the age statements at the Census, or on death, amongst people over age 90 are completely unreliable. There appears to have been, if anything, an over-statement of the number of people aged 94 or more.

CENTRAL MORTALITY RATES.

	Age Group.	Males.		Females.	
		m_{x}	$\frac{\mathrm{m}_{x+5}}{\mathrm{~m}_{x}}$	${ }^{\mathrm{m}}$ x	$\frac{\mathrm{m}_{x+5}}{\mathrm{~m}_{x}}$
		(1)	(2)	(3)	(4)
79-83	.	. 1369	1.56	. 1147	1.59
84-88	. \quad -	. 2138	1.51	. 1828	1.54
89-93	.	. 3218	1.27	. 2806	1.29
94-98	- -	. 4083	. .	. 3624	. .

It was considered unwise to place much reliance on the pivotal mortality rate at age 91 and the data were too small to enable a pivotal value for age 96 to be calculated. The mortality rates from age 87 onwards were therefore completed by means of a Gompertz formula. The criterion adopted for the Gompertz formula was that the total expected deaths after age 83 should agree closely with the total actual deaths after that age. Experiments indicated that the most satisfactory values of -

$$
r\left(\text { i.e. } \frac{\operatorname{colog} p_{x+5}}{\operatorname{colog} p_{x}}\right)
$$

were 1.51 for males and 1.54 for females.
In order to obtain a satisfactory junction between the mortality rates up to age 81 and those from age 86 onwards, the rates between these ages were derived by osculatory interpolation using the pivotal rates at ages 76, 81 and 86 and the amended rate for age 91 .

COMPARISON OF ACTUAL AND EXPECTED DEATHS.

20. In the next Table the graduated mortality rates have been tested by comparing the deaths actually recorded in the years 1946 to 1948 with the expected deaths computed on the basis of the graduated mortality rates and the census population. For this purpose, as the population is given according to age last birthday, the mortality rates $\left(q_{x}\right)$ were converted to central mortality rates (m_{x}) by the formula-

$$
m_{x}=\frac{2 q_{x}}{2-q_{x}}
$$

This formula becomes unreliable after about age 80 because of the rapid increase in mortality rates at high ages and for these ages the formula used was--

$$
m_{x}=\frac{2 q_{x}}{2-q_{x}-\frac{1}{12}\left(\frac{q_{x-1}}{p_{x-1}}-q_{x+1} \cdot p_{x}\right)}
$$

The calculation of the number of expected deaths was made at individual ages but the results have been aggregated in seven-year age groups in order to avoid any bias which might arise from the adoption of the grouping used for the calculation of pivotal values. The Table does not include the comparison for ages 0 to 5 because the mortality rates at these ages have been obtained directly from the records of births and deaths.

COMPARISON OF ACTUAL AND EXPECTED DEATHS.

Age Group.	Males.					Females.				
	Actual Deaths.	Expected Deaths.	Deviation.		$\begin{aligned} & \text { Accumu- } \\ & \text { lated } \\ & \text { Deviation. } \end{aligned}$	Actual Deaths.	Expected Deaths.	Deviation.		$\underset{\substack{\text { Accumu- } \\ \text { lated }}}{\text {. }}$ Deviation.
			+	-				+	-	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
6-12	1,001	968	33		+33	666	648	18		+18
13-19	1,519	1,542		23	$+10$	766	792		26	-8
20-26	2,213	2,207	6		+16	1,550	1,521	29		+21
27-33	2,311	2,300	11		$+27$	2,064	2,089		25	-4
34-40	3,219	3,211	8		$+35$	2,765	2,784	.	19	-23
41-47	5,320	5,413		93	-58	3,828	3,829		1	-24
48-54	9,240	9,101	139		+81	6,407	6,338	69		+45
55-61	15,424	15,517		93	-12	9,266	9,356		90	-45
62-68	20,127	20,093	34		+22	13,098	13,070	28	.	-17
69-75	20,797	20,811	. .	14	--8	17,082	17,067	15		-2
76-82	19,418	19,431		13	-5	18,738	18,650	88		+86
83-89	11,082	11,012	70		$+65$	12,727	12,727	.		+86
90-96	2,060	2,104	. .	44	$+21$	2,950	3,009		59	+27
97-104	148	188	.	40	--19	235	275		40	-13
Total	113,879	113,898	301	320	-19	92,142	92,155	247	260	-13

It will be observed that for both males and females the differences between the actual and expected deaths are small, they change sign frequently and the accumulated deviations are not significant. Owing to the fact that the data are not free of bias as regards the recorded ages, no authority could be claimed for more refined tests based on a detailed examination of the size of the deviations between actual and expected deaths. On the whole it would appear that the graduated rates of mortality reflect closely the mortality experience of the three years under review,

LIFE TABLES AND TABULATED FUNCTIONS.
21. The complete Life Tables for males and females are given in Appendix A. The functions tabulated are-
$l_{x}=$ the number of persons surviving at exact age x;
$d_{x}=$ the number of deaths in the year of age x to $x+1$ among the l_{x} persons who enter on that year ;
$p_{x}=$ the probability of a person aged x living a year ;
$q_{x}=$ the probability of a person aged x dying within a year ;
$\mu_{x}=$ the nominal annual rate of mortality based on the assumption that the intensity of mortality during the moment following the attainment of age x continues throughout the year of age x to $x+\mathbf{1}$;
$\dot{e}_{x}=$ the "complete expectation of life" or the average number of years lived after age x by each of a group of persons aged exactly x.
The formulae adopted for the calculation of the last two functions were as follows :-

$$
\begin{aligned}
& \mu_{x}=\frac{1}{12 l_{x}}\left[7\left(d_{x-1}+d_{x}\right)-\left(d_{x-2}+d_{x+1}\right)\right] \\
& \stackrel{\circ}{x}_{x}=\frac{\sum_{=1}^{\omega} l_{x+t}}{l_{x}}+\frac{1}{2}-\frac{1}{12} \mu_{x} .
\end{aligned}
$$

EXAMINATION OF THE MORTALITY RATES.

22. An examination of the mortality rates reveals several features which require comment. The rates for ages 0 to 5 have been calculated by the special processes described in Appendix \mathbf{D} and have not been graduated. Nevertheless they run smoothly and merge satisfactorily with the rates for higher ages. The rates for males at these ages are, with the exception of age 1, approximately 30 per cent. to 35 per cent. heavier than the corresponding female rates. For age 1 , the male rate is only 10 per cent. heavier. There is no apparent explanation for this feature.

The graduated rates of mortality for males show a maximum at age 22 followed by a decline to ages 25 and 26 where a minimum occurs. Thereafter the rates increase steadily with age. This decrease in mortality rates does not occur amongst females although there is some slackening in the progression of the rates about these ages. The rates for males in the early twenty's appear to be largely dependent on the number of deaths by accident. Deaths from this cause in the age group 20 to 24 were particularly heavy in the three years 1946 to 1948 and this has had the effect of increasing mortality rates in the early twenty's. The effect of the method of graduation has been to create a peak in the middle of the age group 19 to 23 .
23. A comparison of the new National Tables with the Tables for earlier periods is made in Appendix B under the following headings:-

Table 1.-The rates of mortality $\left(q_{x}\right)$ at selected ages ;
Table 2.-Rates of mortality for one period as a proportion of the rates for the preceding period;
Table 3.-The number of survivors $\left(l_{x}\right)$ at selected ages out of 100,000 births ;
Table 4.-The complete expectation of life $\left({ }_{e}^{e}\right)$ at selected ages;
Table 5.-The probability of surviving ten years (${ }_{10} p_{x}$) at selected ages.
24. The main characteristics of the Life Tables in Appendix A and the conclusions to be drawn from the comparative Tables in Appendix B are-
(a) A further substantial reduction has occurred in the mortality rates in the first year of life ;
(b) A further marked improvement is evident in the vitality of both males and females up to about age 40 ;
(c) A less pronounced improvement is shown in the mortality rates of both sexes between ages 40 and 80 ; indeed, in the case of males, the rates between ages 60 and 80 are generally in excess of those recorded in the 1932-34 Tables;
(d) Because of the different methods of graduation, referred to in paragraph 19, no valid conclusions can be drawn from comparative tables as to the trend in mortality rates from age 80 onwards; the indications are however that, if the methods of graduation had been the same, the new mortality rates for males would have been somewhat higher than, and those for females approximately equivalent to, the mortality rates derived from the 1933 Census;
(e) Although the 1932-34 Tables disclosed that the mortality rates of females at the child-bearing ages close to age 30 were slightly in excess of the rates for males at the same ages, the differences in the rates on this occasion are slightly in favour of the females;
(f) The mortality rates for females are lighter than those for males at all ages;
(g) On the whole the vitality of the female population shows a greater degree of improvement over the last fourteen years than does that of the males.

18th April, 1950.
WALTER C. BALMFORD,
Commonwealth Actuary.

APPENDIX A.

1. AUSTRALIAN LIFE TABLE, 1946-1948.

Males.
$\mathrm{A}^{\mathrm{M} 47}$

$\begin{gathered} \text { Age } \\ x \end{gathered}$	l_{x}	d_{x}	p_{x}	q_{x}	μ_{x}	$\stackrel{\circ}{e}_{x}$	$\underset{x}{\text { Age }}$	l_{x}	d_{x}	p_{x}	q_{x}	μ_{x}	$\stackrel{\circ}{e}_{x}$
0	100,000	3,199	. 96801	. 03199	.	66.07	55	81,216	1,202	. 98520	. 01480	. 01423	18.84
1	96,801	317	. 99673	. 00327		67.25	56	80,014	1,296	. 98380	. 01620	. 01560	18.11
2	96,484	190	. 99803	. 00197		66.47	57	78,718	1,392	. 98232	. 01768	. 01707	17.40
3	96,294	141	. 99854	. 00146	. 00163	65.60	58	77,326	1,488	. 98076	. 01924	. 01862	16.71
4	$\mathbf{9 6 , 1 5 3}$	116	. 99879	. 00121	. 00131	64.70	59	75,838	1,587	. 97907	. 02093	. 02026	16.02
5	96,037	103	. 99893	. 00107	. 00113	63.77	60	74,251	1,691	. 97722	. 02278	. 02206	15.36
6	95,934	90	. 99906	. 00094	. 00100	62.84	61	72,560	1,802	. 97517	. 02483	. 02405	14.70
7	95,844	81	. 99916	. 00084	. 00089	61.90	62	70,758	1,919	. 97288	. 02712	. 02628	14.06
8	95,763	74	. 99923	. 00077	. 000080	60.95	63	68,839	2,040	. 97037	. 02963	. 02875	13.44
9	95,689	70	. 99927	. 00073	. 00075	60.00	64	66,799	2,160	. 96766	. 03234	. 03144	12.84
10	95,619	69	. 99928	. 00072	. 00072	59.04	65	64,639	2,279	. 96475	. 03525	. 03435	12.25
11	95,550	72	. 99925	. 00075	. 00073	58.08	66	62,360	2,391	. 96166	. 03834	. 03747	11.68
12	95,478	78	. 99918	. 00082	. 00078	57.13	67	59,969	2,492	. 95844	. 04156	. 04074	11.12
13	95,400	87	. 99909	. 00091	. 000086	56.17	68	57,477	2,582	. 95508	. 04492	. 04417	10.58
14	95,313	97	. 99898	. 00102	. 00096	55.22	69	54,895	2,665	. 95145	. 04855	. 04781	10.06
15	95,216	109	. 99885	. 000115	. 00108	54.28	70	52,230	2,745	. 94744	. 05256	. 05179	9.55
16	95,107	121	. 99873	. 00127	. 00121	53.34	71	49,485	2,825	. 94291	. 05709	. 05628	9.05
17	94,986	131	. 99862	. 00138	. 00133	52.41	72	46,660	2,906	. 93772	. 06228	. 06142	8.57
18	94,855	141	. 99851	. 00149	. 00143	51.48	73	43,754	2,980	. 93189	. 06811	. 06731	8.10
19	94,714	152	. 99840	. 00160	. 00155	50.56	74	40,774	3,036	. 92553	. 07447	. 07386	7.66
20	94,562	160	. 99831	. 00169	. 00166	49.64	75	37,738	3,067	. 91874	. 08126	. 08099	7.23
21	94,402	164	. 99826	. 00174	. 00172	48.72	76	34,671	3,063	. 91165	. 08835	. 08858	6.83
22	94,238	165	. 99825	. 00175	. 00175	47.80	77	31,608	3,022	. 90439	. 09561	. 09644	6.44
23	94,073	162	. 99828	. 00172	. 000174	46.89	78	28,586	2,949	. 89683	. 10317	. 10460	6.07
24	93,911	157	. 99333	. 00167	. 00170	45.97	79	25,637	2,852	. 88875	. 11125	. 11327	5.71
25	93,754	153	. 99837	. 00163	. 00165	45.04	80	22,785	2,737	. 87989	. 12011	. 12277	5.36
26	93,601	153	. 99837	. 00163	. 00163	44.12	81	20,048	2,607	. 86995	. 13005	. 13338	5.03
27	93,448	155	. 99834	. 00166	. 00164	43.19	82	17,441	2,467	. 85854	. 14146	. 14559	4.70
28	93,293	160	. 99829	. 00171	. 00168	42.26	83	14,974	2,311	. 84566	. 15434	. 15975	4.40
29	93,133	166	. 99822	. 00178	. 00175	41.33	84	12,663	2,133	. 83158	. 16842	. 17578	4.11
30	92,967	173	. 99814	. 00186	. 00182	40.40	85	10,530	1,930	. 81668	. 18332	. 19327	3.84
31	92,794	180	. 99806	. 00194	. 00190	39.48	86	8,600	1,708	. 80138	. 19862	. 21182	3.59
32	92,614	186	. 99799	. 00201	. 00198	38.55	87	6,892	1,473	. 78628	. 21372	. 23085	3.36
33	92,428	192	. 99792	. 00208	. 00204	37.63	88	5,419	1,245	. 77021	. 22979	. 25048	3.15
34	92,236	200	. 99783	. 00217	. 00212	36.71	89	4,174	1,030	. 75313	. 24687	. 27190	2.94
35	92,036	210	. 99772	. 00228	. 00222	35.79	90	3,144	833	. 73500	. 26500	. 29524	2.74
36	91,826	223	. 99757	. 00243	. 00235	34.87	91	2,311	657	. 71581	. 28419	. 32078	2.56
37	91,603	240	. 99738	. 00262	. 00252	33.95	92	1,654	504	. 69555	. 30445	. 34861	2.39
38	91,363	259	. 99717	. 00283	. 00273	33.04	93	1,150	374.7	. 67419	. 32581	. 37854	2.23
39	91,104	281	. 99692	. 00308	. 00296	32.13	94	775.3	270.0	. 65173	. 34827	.41070	2.07
40	90,823	306	. 99663	. 00337	. 00322	31.23	95	505.3	187.9	. 62820	. 37180	. 44607	1.93
41	90,517	336	. 99629	. 00371	. 00354	30.33	96	317.4	125.8	. 60360	. 39640	. 48440	1.80
42	90,181	369	. 99591	. 00409	. 00390	29.44	97	191.6	80.9	. 57798	. 42202	. 52597	1.67
43	89,812	406	. 99548	. 00452	. 00431	28.56	98	110.7	49.7	. 55138	. 44862	. 57167	1.55
	89,406	447	. 99500	. 00500	. 00476	27.69	99	61.0	29.0	. 52389	. 47611	. 62008	1.44
45	88,959	493	. 99446	. 00554	. 00527	26.83	100	32.0	16.1	. 49559	. 50441		.
46	88,466	543	. 99386	. 00614	. 00585	25.97	101	15.9	8.5	. 46658	. 53342	-.	.
47	87,923	598	. 99320	. 00680	. 00648	25.13	102	7.4	4.2	. 43701	. 56299		
48	87,325	658	. 99247	. 00753	. 00718	24.30	103	3.2	1.9	. 40701	. 59299	\cdots	.
49	86,667	721	. 99168	. 00832	. 00795	23.48	104	1.3	. 8	. 37676	. 62324	-	\cdots
50	85,946	790	. 99081	. 00919	. 00878	22.67	105	. 5	. 3	. 34645	. 65355		\cdots
51	85,156	863	. 98986	. 01014	. 00970	21.88							
52	84,293	942	. 98883	. 01117	. 01070	21.10							
53	83,351	1,024	. 98771	. 01229	. 01179	20.33							
54	82,327	1,111	. 98650	. 01350	. 01296	19.58							

Age x	l_{x}	d_{x}	p_{x}	q_{x}	μ_{x}	$\stackrel{\circ}{e}_{x}$	Age x	$7 x$	d_{x}	p_{x}	q_{x}	μ_{x}	$\stackrel{\circ}{e}_{x}$
0	100,000	2,519	. 97481	. 02519	.	70.63	55	85,743	779	. 99092	. 00908	. 00880	22.04
1	97,481	289	. 99704	. 00296		71.45	56	84,964	832	. 99021	. 00979	. 00947	21.24
2	97,192	144	. 99852	. 00148		70.66	57	84,132	892	. 98940	. 01060	. 01023	20.44
3	97,048	106	. 99891	. 00109	. 000118	69.77	58	83,240	956	. 98851	. 01149	. 01109	19.65
4	96,942	91	. 99906	. 00094	. 00100	68.84	59	82,284	1,027	. 98752	. 01248	. 01204	18.88
5	96,851	77	. 99921	. 00079	. 00086	67.91	60	81,257	1,105	. 98640	. 01360	. 01310	18.11
6	96,774	66	. 99932	. 00068	. 00073	66.96	61	80,152	1,192	. 98513	. 01487	. 01431	17.35
7	96,708	58	. 99940	. 00060	. 00064	66.01	62	78,960	1,284	. 98374	. 01626	. 01567	16.61
8	96,650	52	. 99946	. 000054	. 00056	65.04	63	77,676	1,379	. 98225	. 01775	. 01713	15.87
9	96,598	49	. 99949	. 00051	. 00052	64.08	64	76,297	1,481	. 98059	. 01941	. 01872	15.15
10	96,549	48	. 99950	. 00050	. 00050	63.11	65	74,816	1,596	. 97867	. 02133	. 02053	14.44
11	96,501	48	. 99950	. 00050	. 00050	62.14	66	73,220	1,727	. 97642	. 02358	. 02266	13.74
12	96,453	49	. 99949	. 00051	. 00050	61.17	67	71,493	1,873	. 97380	. 02620	. 02515	13.06
13	96,404	52	. 99946	. 000054	. 00052	60.20	68	69,620	2,029	. 97085	. 02915	. 02800	12.40
14	96,352	55	. 99943	. 00057	. 00055	59.24	69	67,591	2,193	. 96755	. 03245	. 03122	11.76
15	96,297	59	. 99939	. 00061	. 00059	58.27	70	65,398	2,359	. 96393	. 03607	. 03480	11.14
16	96,238	63	. 99935	. 00065	. 00063	57.31	71	63,039	2,523	. 95997	. 04003	. 03873	10.53
17	96,175	67	. 99930	. 00070	. 00067	56.34	72	60,516	2,680	. 95571	. 04429	. 04301	9.95
18	96,108	74	. 99923	. 00077	. 00073	55.38	73	57,836	2,827	. 95112	. 04888	. 04763	9.39
19	96,034	81	. 99916	. 00084	. 00081	54.42	74	55,009	2,966	. 94608	. 05392	. 05268	8.85
20	95,953	87	. 99909	. 00091	. 00087	53.47	75	52,043	3,099	. 94046	. 05954	. 05829	8.32
21	95,866	95	. 99901	. 00099	. 00095	52.52	76	48,944	3,225	. 93411	. 06589	. 06463	7.82
22	95,771	102	. 99893	.00107	. 00103	51.57	77	45,719	3,345	. 92683	. 07317	. 07189	7.33
23	95,669	111	. 99884	.00116	. 00111	50.62	78	42,374	3,450	. 91858	. 08142	. 08027	6.87
24	95,558	119	. 99875	.00125	. 00120	49.68	79	38,924	3,523	. 90949	. 09051	. 08974	6.44
25	95,439	127	. 99867	. 00133	. 00129	48.74	80	35,401	3,550	. 89973	. 10027	. 10014	6.02
26	95,312	134	. 99859	.00141	. 00137	47.81	81	31,851	3,520	. 88949	. 11051	. 11127	5.64
27	95,178	141	. 99852	. 000148	. 00145	46.88	82	28,331	3,437	. 87870	. 12130	. 12307	5.28
28	95,037	146	. 99846	. 00154	. 00151	45.94	83	24,894	3,307	. 86714	. 13286	. 13576	4.94
29	94,891	151	. 99841	. 00159	. 00156	45.01	84	21,587	3,134	. 85483	. 14517	. 14952	4.62
30	94,740	156	. 99835	. 00165	. 00162	44.08	85	18,453	2,919	. 84182	. 15818	. 16435	4.32
31	94,584	163	. 998828	. 00172	. 00168	43.16	86	15,534	2,670	. 82815	. 17185	. 18024	4.04
32	94,421	171	. 99819	. 00181	. 00177	42.23	87	12,864	2,390	. 81418	. 18582	. 19692	3.78
33	94,250	180	. 99809	.00191	. 00186	41.31	88	10,474	2,103	. 79923	. 20077	. 21455	3.53
34	94,070	190	. 99798	. 00202	. 00196	40.38	89	8,371	1,815	. 78323	. 21677	. 23397	3.30
35	93,880	201	. 99786	. 00214	. 00208	39.46	90	6,556	1,533	. 76616	. 23384	. 25507	3.08
36	93,679	213	. 99773	. 00227	. 00221	38.55	91	5,023	1,266	. 74798	. 25202	. 27804	2.86
37	93,466	224	. 99760	. 00240	. 00234	37.64	92	3,757	1,019	. 72865	. 27135	. 30306	2.67
38	93,242	236	. 99747	. 00253	. 00247	36.72	93	2,738	799	. 70814	. 29186	. 33029	2.48
39	93,006	248	. 99733	. 00267	. 00260	35.82	94	1,939	608	. 68644	. 31356	. 36025	2.31
40	92,758	263	. 99716	. 00284	. 00275	34.91	95	1,331	447.8	. 66353	. 33647	. 39276	2.14
41	92,495	281	. 99696	. 00304	. 00294	34.01	96	883.2	318.5	. 63943	. 36057	. 42820	1.99
42	92,214	301	. 99674	. 00326	. 00315	33.11	97	564.7	217.9	. 61414	. 38586	. 46691	1.84
43	91,913	323	. 99649	. 00351	. 00339	32.22	98	346.8	143.0	. 58772	. 41228	. 50899	1.71
44	91,590	347	. 99621	. 00379	. 00365	31.33	99	203.8	89.6	. 56021	. 43979	. 55479	1.58
45	91,243	375	. 99589	. 00411	. 00395	30.45	100	114.2	53.5	. 53168	. 46832		
46	90,868	406	. 99553	. 00447	. 00429	29.57	101	60.7	30.2	. 50224	. 49776		
47	90,462	442	. 99511	. 00489	. 00468	28.70	102	30.5	16.1	. 47199	. 52801		
48	90,020	483	. 99463	. 00537	. 00513	27.84	103	14.4	8.0	. 44108	. 55892		
49	89,537	526	. 99412	. 00588	. 00563	26.99	104	6.4	3.8	. 40969	. 59031	.	.
50	89,011	571	. 99359	. 00641	. 00616	26.14	105	2.6	1.6	. 37802	. 62198		
51	88,440	615	. 99305	. 00695	. 00671	25.31	106	1.0	1.6	. 34626	. 65374		
52	87,825	655	. 99254	. 00746	. 00724	24.48	107	1.3	.2	. 31467	. 68583		
53	87,170	694	. 99204	. 00796	. 00774	23.66			.		. 6858	.	-
54	86,476	733	. 99152	. 00848	. 00824	22.85							

APPENDIX B.

COMPARATIVE TABLES.

1. Rates of Mortality $\left(q_{x}\right)$ at Selected Ages.

2. Rates of Mortality for One Period as a Proportion of the Rates for the Preceding Period.

3. Number of Survivors $\left(l_{x}\right)$ at Selected Ages out of 100,000 Births.

	$\begin{aligned} & \text { Age } \\ & \end{aligned}$		Males.			Females.		
			1920-22.	1932-34.	1940-48.	1920-22.	1932-34.	1946-48.
0	.	.	100,000	100,000	100,000	100,000	100,000	100,000
10	.	\cdots	89,389	93,193	95,619	91,314	94,424	96,549
20		.	87,697	91,797	94,562	89,906	93,341	95,953
30	.	\cdots	84,743	89,566	92,967	87,086	91,174	94,740
40	.	\cdots	80,813	86,539	90,823	83,279	88,175	92,758
50	.	\ldots	74,330	81,061	85,946	78,313	83,680	89,011
60	.	.	63,386	69,950	74,251	70,150	75,565	81,257
70	\ldots	..	44,332	50,086	52,230	54,771	59,629	65,398
80	.	.	18,614	22,223	22,785	27,170	31,539	35,401

4. Complete Expectation of Life (e e_{x}) at Selected Ages.

	$\begin{gathered} \text { Age } \end{gathered}$		Males.			Females.		
			1920-22.	1932-34.	1946-48.	1920-22.	1932-34.	1946-48.
0	.	.	59.15	63.48	66.07	63.31	67.14	70.63
10	.	\ldots	56.01	58.02	59.04	59.20	61.02	63.11
20	.	\cdots	46.99	48.81	49.64	50.03	51.67	53.47
30	.	\cdots	38.44	39.90	40.40	41.48	42.77	44.08
40	.	.	30.05	31.11	31.23	33.14	34.04	34.91
50	.	\cdots	22.20	22.83	22.67	24.90	25.58	26.14
60	.	\cdots	15.08	15.57	15.36	17.17	17.74	18.11
70	\cdots	.	9.26	9.60	9.55	10.41	10.98	11.14

5. Probability of SUrviving Ten Years (${ }_{10} p_{x}$) at Selected Ages.

	$\underset{(x)}{\text { Age }}$			Males.			Females.		
				1920-22.	1932-34.	1946-48.	1920-22.	1932-34.	1946-48.
-	0	.	\cdots	. 89389	. 93193	. 95619	. 91314	. 94424	. 96549
	10	.	.	. 98107	. 98502	. 98895	. 98458	. 98853	. 99383
	20	.	.	. 96632	. 97570	. 98313	. 96863	. 97678	. 98736
	30	\ldots	-	. 95362	. 96620	97694	. 95628	. 96711	. 97908
	40	\cdots	.	. 91978	. 93670	. 94630	. 94037	. 94902	. 95960
	50	.	.	. 85276	. 86293	. 86393	. 89576	. 90302	. 91289
	60	"	.	. 69940	. 71603	. 70342	. 78077	. 78911	. 80483
	70	.	.	. 41988	. 44370	. 43624	. 49607	. 52892	. 54132

APPENDIX C.

1. POPULATION AT CENSUS, 30 тн JUNE, 1947, AND DEATHS IN THREE YEARS, 1946-48, AUSTRALIA.

Males.

2. POPULATION AT CENSUS, 30 TH JUNE, 1947, AND DEATHS IN THREE YEARS, 1946-48, AUSTRALIA.

Females.

3. BIRTHS REGISTERED IN AUSTRALIA DURING EACH QUARTER, 1940-48.

4. DEATHS UNDER SIX YEARS OF AGE REGISTERED IN AUSTRALIA, 1941-48.

Females.

1941	..	.	\ldots	\ldots	.	2,321		\ldots	\ldots	.	-•
1942	\cdots	.	\cdots	.	\cdots	2,304	354		\cdots	\cdots	.
1943	.	\cdots	.	.	.	2,342	350	196		.	.
1944	2,078	286	124	100		.
1945	.					2,032	224	84	106	82	.
1946	\cdots	1,780	178	137	99	2,194	247	122	89	79	57
1947	.	1,784	201	133	107	2,225	226	103	75	60	48
1948	.	1,643	193	140	110	2,086	237	106	68	52	45

APPENDIX D.

SPECIAL PROCESSES ADOPTED FOR CALCULATION OF MORTALITY RATES AT INFANTILE AGES.

Age 0. -If the rate of mortality at age 0 be denoted by q_{0} and the probability of dying in the first three months after birth be denoted by $q_{0}(0-3$ months),
then $q_{0}=q_{0}{ }^{(0-3 \text { months })}+q_{0}{ }^{(3-6 \text { months })}+q_{0}{ }^{(6-9 \text { months })}+q_{0}{ }^{(0-12 \text { months })}$,
where $q_{0}{ }^{(0-3 \text { months) }}=\frac{\text { Deaths in 1946, } 1947 \text { and } 1948 \text { (age } 0-3 \text { months) }}{\frac{1}{2} \beta^{4} 1945+\beta_{1946}+\beta_{1947}+\beta_{1948-\frac{1}{2} \beta^{4} 1948}}$,
$q_{0}{ }^{(3-6}$ months) $=\frac{\text { Deaths in 1946, 1947 and } 1948 \text { (age 3-6 months) }}{\frac{1}{2} \beta^{3} 1945+\beta^{4} 1945+\beta_{1946}+\beta_{1947}+\beta^{1} 1948+\beta^{2} 1948+\frac{1}{2} \beta^{3} 1948}$, etc.
and where β_{1946} represents the births in the year 1946,
$\beta^{4} 1945$ represents the births in the fourth quarter of 1945 , \&c.
Ages 1-5.-For these ages the method employed in the construction of the latest National Tables for England and Wales was used, e.g.-

$$
q_{2}=\left\{\begin{array}{l}
\text { Deaths at } \\
\text { age } 2-3 \\
\text { years in } \\
\text { 1946, 1947 } \\
\text { and } 1948
\end{array}\right\} \div\left\{\begin{array}{c}
\frac{1}{8}\left(\beta^{1} 1943+3 \beta^{2} 1943+5 \beta^{3} 1943+7 \beta^{4} 1943\right) \\
+\beta 1944+\beta^{1} 1945 \\
+\frac{1}{8}\left(7 \beta^{1} 1946+5 \beta^{2} 1946+3 \beta^{3} 1946+\beta^{4} 1946\right) \\
- \text { (deaths at age 0-1 in 1944, 1945 and 1946) } \\
- \text { (deaths at age } 1-2 \text { in 1945, 1946 and 1947) }
\end{array}\right\}
$$

CORRIGENDA - PART XVII - INDUSTRY

CBNSUS OF THE COMMONWEALTH OF AUSTRALIA, $30 T H$ JUNE, 1947 VOLUME II - DETAILTD TABIES
CORRIGENDA - PART XIX - OCCUPAPIONAL STATUS

